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Kurzfassung

Klimaforscher simulieren Wind- und Meeresströmungen, um diese besser zu verstehen.
Dafür benötigen sie Visualisierungen, um ihre Ergebnisse zu validieren und weiter zu ver-
bessern. In dieser Arbeit stellen wir ein Rahmenwerk vor, das instationäre 2D-Vektorfelder
auf gekrümmten Oberflächen visualisiert. Unser Rahmenwerk berechnet die Visualise-
rungen nicht in 3D, sondern intrinsisch in 2D. Als Beispiel zeigen wir Visualisierungen
von 2D Windströmungen auf der Kugel. Wir verwenden Methoden der differentiellen
Geometrie, um Line Integral Convolution und Path Lines auf gekrümmten Oberflächen
zu berechnen. Während Line Integral Convolution einen Überblick über einen Zeitschritt
eines instationären Vektorfeldes bietet, geben Path Lines einen detaillierteren Einblick.
Wir animieren die Line Integral Convolution Bilder und Path Lines, um die Richtung
der Strömung zu zeigen. Außerdem beleuchten wir die Path Lines, um die räumliche
Wahrnehmung zu verbessern. Unsere Visualisierungen werden in Echtzeit berechnet und
können interaktiv verwendet werden.
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Abstract

Climate researchers often use simulations to generate 2D vector fields of wind or ocean
currents. They need visualization tools to validate and further improve their research. In
this work, we present a framework that is capable of visualizing unsteady 2D flow fields
on curved surfaces. An important property of our framework is that it works intrinsically
in 2D, instead of in 3D ambient space. Our primary example is the visualization of
2D geophysical flow on the 2-sphere. We build on methods from differential geometry
to compute line integral convolution and path lines intrinsically on curved surfaces.
While line integral convolution provides an overview of one time step of an unsteady
flow field, path lines give us a more detailed insight into an unsteady flow field. We
animate the line integral convolution images and the path lines to show the direction of
the flow. Furthermore, we illuminate the path lines to improve spatial perception. Our
visualizations are all computed in real time and can be used interactively.
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CHAPTER 1
Introduction

Climate change is a significant challenge for our generation. Scientists around the world
are researching to understand why climate behaves as it does. They use supercomputers
to build precise models of the climate. These simulations produce large scale data sets
of wind flows or ocean currents. Having access to interactive visualization systems
that can handle these large data sets is essential for climate researchers to gain a
better understanding of their research. In this work, we present a framework that is
capable of visualizing big flow data sets on curved surfaces interactively. We focus on
the visualization of 2D geophysical data on a sphere. We perform all computations
intrinsically, which means that we only take the surface of a given shape into account
and not the surrounding 3D space. In this project, we chose to perform all computations
intrinsically in 2D because climate simulations are often computed in 2D as well and
output 2D intrinsic vector fields with longitude, latitude coordinates.

1.1 Motivation
Flow data often comes from simulations that compute 2D vector fields. We show
algorithms that visualize this data on curved manifolds by taking only 2D vectors into
account. A lot of papers that have studied flow visualization on curved manifolds use 3D
vector fields instead. This leads to algorithms where integral curves have to be projected
to the 2D surface. While it is mathematically simpler to work in 3D ambient space of a
2D surface embedding, we show that our purely intrinsic approach is very efficient.

1.2 Goal of the Thesis
The goal of this work is to describe two very important flow visualization methods from
a purely intrinsic point of view. We show how to compute line integral convolution
and illuminated path lines on curved manifolds. We explicitly use 2D vector fields for
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1. Introduction

computing these visualizations, which has a positive impact on computation time and
memory usage. Further, the intrinsic computations lend themselves to a very efficient
massively parallel implementation on modern graphics hardware (GPUs).

1.3 Structure of the Work
After an overview of the state of the art of flow visualization on curved surfaces, we
present an introduction to the underlying mathematical concepts. We make the reader
familiar with the idea of manifolds and what to keep in mind when dealing with vector
fields on manifolds. After that, we discuss methodology, implementation and results for
line integral convolution and illuminated path lines. In all our examples, the important
case of the sphere and 2D geophysical flow are the primary example.
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CHAPTER 2
Related Work

This chapter is divided into related work regarding line integral convolution (LIC) and
illuminated path lines. We present several different approaches and compare them to our
work.

2.1 Line Integral Convolution

When dealing with flow on curved surfaces, we have to distinguish between intrinsic
and extrinsic computation approaches. Most of the published work about LIC takes an
extrinsic approach. For example, Laramee et al. [LJH03] visualize 3D unsteady flow on
arbitrarily curved surfaces. Their method is called image based flow visualization, which
generates output images similar to LIC. Indeed the computation of the textures differs
from the LIC algorithm. They associate 3D flow data with triangulated surface meshes
by mapping a 2D texture to the surface. Our work is able to handle parameterized
surfaces and we use an intrinsic approach suitable for climate simulations that produce
2D vector fields. Van Wijk [Wij03] presents a similar image based approach.
Mao et al. [MKFI97] introduce another extrinsic and view dependent technique to
compute LIC in image space with an arbitrarily complex topology. They intersect rays,
starting from each pixel, with the surface and evaluate the convolution integral only at
the visible intersections.
In their work LIC on Surfaces Stalling and Hege [SH97] present both an intrinsic and an
extrinsic approach. In contrast to our intrinsic method they assume that the manifold
can be parameterized by one 2D Euclidian coordinate system. Our method can deal
with manifolds that do not satisfy this condition. For example, the sphere cannot be
represented by one coordinate system which we explain later in more detail. Moreover,
Stalling and Hege adapt the kernel size of the LIC filter to avoid distortions in the
resulting texture. Since we have a metric tensor for our surface, we do not need to do
this because the metric allows us to take steps of constant sizes on the manifold. The
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2. Related Work

extrinsic approach of Stalling and Hege is to compute a texture segment for each triangle
of an arbitrary surface. The major challenge here is to create a continuous texture over
the whole triangulatad surface.

2.2 Illuminated Path Lines
Integral curves such as stream lines, path lines, streak lines and time lines are helpful
tools to visualize vector fields. We are focusing on illuminated path lines in an unsteady
flow field. Several papers proposed techniques to place and illuminate curves in an
optimal manner. Jobard and Lefer [JL97] present an algorithm that distributes stream
lines evenly in 2D space. Since they are working with steady flow fields they only apply
their algorithm for stream lines and not for other integral curves. Turk and Banks [TB96]
introduce an image guided approach to place stream lines. They improve the stream
line placement by minimizing an energy function that takes a low-pass filtered version of
the current image and compares it with the desired visual density. In contrast to these
approaches, we seed a small number of path lines close to each other and interactively
compute the path lines starting around the mouse cursor. Line illumination plays an
essential role when it comes to spatial perception. However, lines do not have normals,
which can be used to compute illumination. Zoeckler et al. [ZSH96] are using the tangent
vectors of the curves to formulate rules for the ambient, diffuse and specular illumination
components. They apply conventional texture mapping techniques available in regular
graphics hardware to map colours to the integral lines. In our work, we use their approach
to illuminate path lines. Mallo et al. [MPSS05] present simplified expressions of the
Blinn-Phong-Model, which approximate the lines as infinitely small tubes.
All these methods compute integral curves in Euclidian space. Since we are using methods
from differential geometry, we compute the integral curves inside the charts. We can, at
least locally, compute the path lines in R2.

4



CHAPTER 3
Mathematical Background

In this chapter, we describe the underlying mathematical concepts from differential
geometry. We will try to introduce them as general as possible using the language of
differential geometry. Later, we specialize them for our purpose of flow visualization
on the sphere. The advantage of this approach is that the mathematical concepts can
be used unchanged for more advanced cases. Our description and notation are based
on the first two chapters of the work of B. Schutz [Sch80] on Geometrical methods of
mathematical physics and lecture notes of Geometric Anatomy of Theoretical Physics by
Frederic Schuller [Rea19] [Sch19]. The reader should be equipped with a basic knowledge
of Topology and Linear Algebra.

3.1 Definition of a Manifold

In order to understand the definition of a manifold, the reader should be familiar with
topological spaces and open sets. Our geometric objects on which we want to visualize
flow (e.g., the 2-sphere) make use of the mathematical concept of a manifold. A set M is
called a manifold if there is an open neighbourhood U for each point p in M such that a
continuous and bijective mapping to an open set of Rn exists. M and Rn are considered
to be topological spaces. The dimension of the manifold is defined by n. Let us have
a closer look at the terms continuous and bijective. A map f : M → N between two
topological spaces M and N is called continuous if and only if the inverse image of every
open set of N is open in M as well. In other words, f has to map every open set in M
to an open set in N, as well as f−1 has to map every open set in N to an open set in M .
f is called bijective if every element in M maps exactly to one element in N . If f−1 is
continuous too, f is called a homeomorphic function. This definition allows us to view
M locally like Rn because of f : M → Rn. We can map every point p in a local region
U of the manifold M to an n-tupel of real numbers (x1(p), ..., xn(p)) ∈ Rn, called the
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3. Mathematical Background

Figure 3.1: A manifold M with its co-ordinate maps f1 and f2. U1 and U2 are subsets of
M . f12 and f21 are chart transition maps. Source: [Jon19]

co-ordinates of p under the map f . A common way to write these coordinates is to place
the indices as superscripts.

3.2 Charts of a Manifold

One open neighbourhood U does not necessarily include all points of M . Typically there
is no single open neighbourhood that contains all points of M . For instance the 2-sphere
needs at least 2 maps to cover it.

3.2.1 Definition of a Chart and an Atlas

We need to define open neighbourhoods on M , such that every point p on M is covered
by at least one open neighbourhood. A chart is defined by an open neighbourhood Ui
and its map fi. A set of charts that covers the whole manifold M is called an atlas A .
A more formal definition is given as a collection of charts A := {Ui, fi | i ∈ A} such that

⋃
i∈A

Ui = M.

Note that A is a set of indices for all charts in A . In Figure 3.1 two subsets of M are
shown. U1 and U2 are overlapping charts that do not cover the whole manifold. Therefore,
they are not an atlas but could be part of one. Both charts have a mapping fi to a
subspace of Rn. adjacent charts of an atlas must have overlaps which directly follows
from the definition of a chart as an open set. Figure 3.1 shows the overlap between
U1 ∩ U2 in turquoise.

6



3.3. Tangent Vector Spaces

3.2.2 Chart Transition Maps

All points that are inside the intersection between two charts can be represented by
two different mappings. Therefore they can be expressed with two different pairs of
coordinates. For example consider a point p ∈ U1 ∩ U2 in Figure 3.1. f1 maps p to a
point x = (x1, x2, ..., xn) in Rn. f2 maps p to another point y = (y1, y2, ..., yn) in Rn. A
chart transition map describes the relationship between x and y. To construct a chart
transition map from x to y we first take f−1

1 (x) which gives us a unique point s on M . s
is unique on M because f1 is a homeomorphic function. Now f2(s) takes us from M to
y. We can formalize the chart transition map f12 as f12 = f2(f−1

1 (x)). Another notation
for f2 after f−1

1 is f2 ◦ f−1
1 , which is a function from Rn → Rn.

3.3 Tangent Vector Spaces

We first introduce curves and smooth functions on manifolds before having a closer look
at tangent vector spaces on manifolds. This definition of vectors is used in differential
geometry and might be different from what many readers associate with vectors.

3.3.1 Smooth Functions on Manifolds

A function f on a manifold M assigns a real number to every point on M . For one input
point on M f assigns a real number as the output. The more formal definition of a
smooth function on M is given as an infinite dimensional vector space over R over the
underlying set of all smooth functions C∞(M):

C∞(M) := {f : M → R | f is smooth}.

If f is infinite differentiable, it is called smooth. Further, we define addition for two
smooth functions f and g and point wise scalar multiplication with any λ ∈ R

(f + g)(p) := f(p) + g(p)

(λf)(p) := λf(p)

3.3.2 Smooth Curves on Manifolds

We define a smooth curve as a mapping γ : R → M from an open set in R onto the
manifold M . This definition does not yet say anything about the direction of the curve
on M . Figure 3.2 shows an image of a curve on a manifold.
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3. Mathematical Background

Figure 3.2: A curve on a manifold. a and b are the boundaries of the open set in R.
Source: [Sch80]

3.3.3 A Vector in Linear Algebra

Vectors are often described as a direction in Euclidian space with a certain length. This
is only one kind of vector. Generally speaking, a vector is an element of a vector space.
To construct a vector space, vector addition and scalar multiplication must be defined.
These two rules together, with eight other axioms, form a vector space. These axioms are
the associativity and commutativity of addition, the existence of an identity and inverse
element for the addition, the associativity of scalar multiplication, the distributivity of
scalar and vector sums and the existence of an identity element in scalar multiplication.
The most important concept to remember is that a vector is an abstract element of a
vector space. A vector space can be anything that follows the axioms above, for example,
functions in Euclidian space or diagonal matrices.

3.3.4 Tangent Vectors

With a good understanding of curves, functions and vector spaces we are well prepared
to have a closer look at tangent vectors on manifolds. Intuitively speaking the velocity
at which a function changes along a curve γ at p is the tangent vector Xγ,p. Often the
tangent vector is depicted as a geometrical arrow with a direction and a length. Such
depictions are only well defined in the two- and three dimensional Euclidian space and
not on manifolds in general. That is why we define the tangent vector Xγ,p of the curve
γ at point p as a directional derivative of a linear map

Xγ,p : C∞(M) ∼−→ R.

Here, we consider R to be a 1-dimensional vector space over the real numbers. The linear
map Xγ,p is defined as taking a function f ∈ C∞(M) and mapping it to a real number
by taking the derivative along the curve γ at p:

f 7→ (f ◦ γ)′(λ0).

8



3.4. Chart Induced Basis

f ◦ γ is the function composition f after γ and equivalent to f ′(γ(λ0)). Since f ◦ γ is a
function from R→ R we can take the derivative like in one-dimensional calculus. This
mapping Xγ,p is characteristic for a curve γ at a point p that is given by the parameter
of the curve λ. Hence it is called a tangent vector of γ at p ∈M . Note that we are not
limited to a certain function f . In other words, the tangent vector is one way to describe
the derivative of every smooth function on M .

3.3.5 Tangent Spaces

Having the concept of a tangent vector defined at p we can think of the corresponding
vector space at p. The tangent vector space TpM is the set of all tangent vectors at p on
M

TpM := {Xγ,p | γ is a smooth curve through p}.

To make TpM a vector space, we need to define the operations
⊕

(vector addition) and⊙
(scalar multiplication) which have to fulfill several conditions. Vector addition and

scalar multiplication are defined as follows

⊕ : TpM × TpM → TpM

(Xγ,p ⊕Xδ,p)(f) := Xγ,p(f) +Xδ,p(f)

� : R× TpM → TpM

(λ�Xγ,p(f)) := λ ·Xγ,p(f)

where + and · denote the usual operations on the vector space R.

3.4 Chart Induced Basis

Every vector in TpM can be represented as a linear combination of some basis vectors.
We may use specific basis vectors that are solely defined by the choice of a chart. May
(U, x) be a chart on M where U is a subset of M and x the co-ordinate map of the chart.
The co-ordinate maps xa : U → x(U) are smooth functions on U . Note that xa maps
M → R. For example, a two-dimensional sphere S2 would have two coordinate maps
x1 and x2. The number of basis vectors is equal to the number of dimensions of the
manifold. We define the basis vectors of TpM as a set

9



3. Mathematical Background

{( ∂

∂xa
)p | 1 ≤ a ≤ dim M}

where ( ∂
∂xa )p ∈ TpM . Hence it is a set of tangent vectors Xγ(a),p that is dependent on a

chart U a point p ∈ U and the functions xa. We define the basis vectors by using the
special chart induced curves γ(a)

γ(a)(t) := x−1 ◦ (0, ..., 0, t, 0, ..., 0)a.

Note that (0, ..., 0, t, 0, ..., 0)a is an element of Rd that has t at the a-th position. Let us
put the definition of chart induced curves γ(a) in the context of the other definitions.
Previously we defined a curve as a map R→M . This is exactly what the curves γ(a) are
doing here. γ(a) takes t ∈ R as an input parameter and outputs a point on the manifold
by inverting the chart map x. Using the inverse chart map that operates on Rd →M is
valid because it is a homeomorphic function. This definition is possible because we are
dealing with finite dimensional manifolds. All basis vectors of a tangent space TpM at p
are now defined by

Xγ(a),p : (xa ◦ γa)′(t)→ R.

Every basis vector is only valid in the vector space TpM at a specific point p covered by
the chart U .

3.5 Change of Components
Now we have a tool to describe every vector Xγ,p ∈ TpM as a linear combination of the
basis vectors of TpM in a chart dependent manner. We now need to find a rule that
tells us how to change the components of a vector, when the basis vectors are changed.
Particularly we need to change the components of a tangent vector located at a point in
an overlapping chart region. Let δjx be the components of a tangent vector with respect
to a chart (U, x) induced basis. We want to compute the change of these components
with respect to a new chart (V, y) induced basis. We need the objects ( ∂y

i

∂xj )p:

( ∂y
i

∂xj
)p = ∂i(yi ◦ x−1)(x(p))

These are the component wise partial derivatives of the chart transition maps from U to
V . We define our new components δiy with respect to the chart (V, y) induced basis:

δiy =
dimM∑
j=1

δjx( ∂y
i

∂xj
)p.

10



3.6. The Metric Tensor

This is the sum over all components with respect to the basis of U multiplied with the
partial derivatives of the corresponding components of the chart transition map from U
to V . The change of components allows us to speak about one vector with respect to
different basis vectors in different charts.

3.6 The Metric Tensor
The primary motivation for mentioning metric tensors in this work is that they endow
a manifold with a tool for measuring lengths. Consider a 2-sphere embedded in 3D
Euclidian space. We are using the metric tensor to compute the length of a vector. On
every point p on our manifold M we can define a metric tensor gp. The metric tensor is
basically a function gp(Xp, Yp) that takes two tangent vectors Xp and Yp of the tangent
space TpM as an input and outputs a real number. gp has to be bilinear, symmetric and
nondegenerate [Car92]. In our case we have a second order metric tensor field g defined
by an inner product

〈
v, w

〉
:= g(v, w) to each TpM , which distributes smoothly over M .

Note that v and w are both elements of a tangent space TpM . The length of one vector
w is then given by ||w|| :=

√〈
w,w

〉
.

11





CHAPTER 4
Flow on the 2-Sphere

4.1 The 2-Sphere as a Manifold
In this work, we focus on 2-dimensional manifolds. A common example for a 2D manifold
is the 2-sphere. The 2-sphere is the surface of the sphere without its interior. The
2-sphere does not have a volume. The sphere is an example for showing the need of
several charts. We cannot find one chart that covers the whole sphere. The biggest chart
we can construct is an open set that contains the whole sphere except one point (e.g. the
south pole). If we included this point, there would be no f that is homeomorphic to
R2. Hence we need at least two charts to cover the whole sphere. In our framework, we
choose to use six charts to reduce distortions. Four charts are arranged symmetrically
around the equator, and one chart overlays each pole. Figure 4.1 shows our arrangement
of charts around a 3-dimensional embedding of the sphere.

4.2 The Metric Tensor of the 2-Sphere
In the arrangement of our six charts that are the orthographic projection of the sphere,
each chart U ⊂ R2 is defined inside a disk of radius r in the (u, v) plane. All (u, v)-
coordinates in U have to satisfy U := {(u, v) : u2 + v2 ≤ r2}. We use an inclusion map ι
for each chart from R2 (intrinsic view) to R3 (extrinsic view) to define the metric:

ι(x,y) : U ⊂ R2 ↪→ R3

(u, v) 7→ (u, v, w).

Note that w above is defined as w :=
√
r2 − u2 − v2. To avoid severe distortions in a

chart we use it only if u2 ≤ w2 and v2 ≤ w2. This rule defines the optimal region which

13



4. Flow on the 2-Sphere

Figure 4.1: The different regions of the sphere covered by charts. Six charts align
symmetrically around the sphere as planes in R2. All adjacent charts are overlapping.

is covered by a chart. Figure 4.1 shows these charts and their projections on the 2-sphere.
The basis vectors { ∂

∂xi } = ∂i = ei, i ∈ {1, 2} in each chart are intrinsically defined by the
components (1, 0) and (0, 1). Figure 4.2 shows the two chart induced curves γ(a) that
are used to define a chart induced basis at a certain point on the manifold, on one chart
as well as on the 2-sphere. From an extrinsic perspective e1 and e2 map to the partial
derivative of the corresponding ι, i.e.,

ẽ1|(u,v) =

 1
0

−u/w

 , ẽ2|(u,v) =

 0
1

−v/w

 .
The components of ẽ1 and ẽ2 are given in a Cartesian coordiante system in R3. Finally
we can introduce the components gij of our intrinsic metric tensor g like

gij |u,v = 1
w2

[
ẽ1 · ẽ1 ẽ1 · ẽ2
ẽ2 · ẽ1 ẽ2 · ẽ2

]
,

where · is the dot product. This expression further simplifies to

gij |u,v = 1
w2

[
r2 − v2 uv
uv r2 − u2

]
.

14



4.2. The Metric Tensor of the 2-Sphere

(a) Two curves on a chart (b) Two curves projected on the sphere

Figure 4.2: Each curve is used to define one basis vector. The tangent vector space of
these basis vectors is located on the point where both curves intersect.

In the case of the sphere g(w,w) gives the squared length for a vector w := (u, v) as:

g(w,w) =
(
u v

)
gij

(
u
v

)
.

The metric tensor is defined on each chart. Even though we derive the metric tensor in
R3, we nevertheless, use the metric entirely intrinsically.
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CHAPTER 5
Visualization of Geophysical Flow

on the 2-Sphere

This chapter describes the flow visualization techniques we have implemented in our
framework. After a short description of our data set, we show the technique of Eulerian
integration to compute integral curves of a vector field. LIC as well as path lines make use
of this integration technique. Our description is based on the work Numerical Algorithms
of Justin Solomon [Sol15]. After that, we present our methodology and results for line
integral convolution and illuminated path lines.

5.1 2D Geophysical Flow Data

The data set we are using is provided by the Deutsches Klima Rechenzentrum (DKRZ).
The data is given in the NetCDF-Format and includes wind data for the whole surface of
the earth. We have a resolution of approximately 5 kilometres. The data set contains 96
time steps, one time step every 15 minutes which is the wind data of one day. It has a
size of approximately 17 GB. The vectors are given in uv components on an ICON grid
on the sphere. All components are defined for one chart and its basis vectors. Using one
chart is possible because the 2-sphere is discretized. We transform this chart into our
arrangement of six charts (Figure 4.1). We define two basis vectors for each chart and
change the components of the vectors with respect to the new basis vectors. To compute
all vectors with the correct length on a given position in a chart is only possible because
we know the distortion of the metric tensor. More information about the data set and its
representation can be found in the documentation of the ICON Grid of DKRZ [LL19].
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5. Visualization of Geophysical Flow on the 2-Sphere

5.2 Euler Integration

We use numerical methods to compute the path lines and the stream lines employed
for LIC. Intuitively speaking we want to trace the path that a massless particle would
take. If the vector field is steady over time the resulting line is called a stream line, if
not it is called a path line. Euler integration is the simplest method to compute integral
curves for a vector field. From a given starting position s0 on the manifold M we move
one step dt in the direction of the vector V (s0). It is also valid to move in the backward
direction −V (s0). One integration step takes us to a new position s1 on M from where
we can repeat that process. Since s1 is not necessarily at a position where we have stored
our discretized vector field, we compute the vector V (s1) through interpolation of the
surrounding vectors. We can formalize one forward integration step as:

si+1 = si + dtV (si).

The method gets more accurate the smaller we chose dt. However, there is always an error
since we cannot compute curves with an infinitely small dt. This inaccuracy is visualized
in Figure 5.1. We always need to find a tradeoff between accuracy and performance. The
smaller we chose dt the more expensive the computation gets. To compute curves, a
starting position s0 and one or more termination conditions for the integration must be
defined. We define these later for each visualization method. This description is valid for
computations in Euclidian space. Since we are dealing with curved manifolds, we can
only use Eulerian integration inside the charts. If the integration leaves a chart, we use
the chart transition maps to continue the integration in another chart.

Figure 5.1: The red curve shows the Euler approximation of the blue curve. A smaller
distance between the sample points si results in a more precise representation of the blue
curve. Source: [Tak19]
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5.3. Line Integral Convolution

5.3 Line Integral Convolution

5.3.1 Methodology

Line integral convolution [CL93] is well suited to provide an overview of one time step of a
vector field. LIC is a texture based visualization technique which smudges a noise texture
in the direction of the flow. Neighbouring texels along the flow have high coherence while
normal to the flow direction there is no coherence. More generally speaking, we convolve
a 2D noise image N along the stream lines of the flow. Since we want to display the LIC
texture on the 3D embedding of a manifold, we compute the LIC texture per fragment in
the chart and map it back to the curved surface. We compute a stream line with n steps
for each fragment by making n/2 forward and n/2 backward Euler steps. We terminate
the integration in a chart if we have reached the maximum number of integration steps or
the integration comes to a chart boundary. In that case, we continue the integration in
another chart. We obtain the integration starting position in the new chart by applying
the respective chart transition map. To visualize the direction of the flow, we shift a
time-dependent periodic filter function h(u, t) along the stream line. We weight each
texel along the stream line with the corresponding value of the filter function. Through
shifting the filter function over time, the LIC texture is animated (see Video [Tro19]).
One has to be aware that the animation only shows the direction of the flow and not
how particles evolve over time. Since the LIC texture is computed using stream lines it
only shows one time step of our unsteady flow field. Figure 5.2 shows two time steps of
our periodic filter function. In summary, we obtain the grey value of a texel at position
x in the chart at time t by

LIC(x, t) =
∫ 1

−1
N(sx(u))h(u, t)du

where sx(u) is a parameterization of the stream line going through x. At u = −1 is the
start point of the stream line and at u = 1 is the end point of the stream line. The noise
image N takes the 2D position sx(u) of the stream line to output a random grey value.
Note that h(u, t) is either 1 or 0. When applying this method to each fragment, we get a
LIC texture for the visible 3D embedding of the manifold. Additionally, we colour-code
the length of the flow vector located at each texel. We determine the length of the vector
at each texel by using the metric and mapping it to an RGBA colour value. The LIC
grey value was then weighted with this colour. Furthermore, we allow the user to step
through all time steps of the vector field by linearly interpolating the flow data between
the different time steps.

5.3.2 Implementation

We wrote a framework in C++ and OpenGL that implements a GPU based version
of this LIC algorithm. All fragment colours are computed in parallel in the fragment
shader that has access to the vector field textures and the noise texture. Computing
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Figure 5.2: Two different time steps of our periodic filter function h(u, t). Since we make
n/2 forward and n/2 backward Euler steps, the blue vertical line represents the position
of the texel on the stream line.

LIC on the GPU results in a massive performance speedup compared to CPU based
implementations. Our visualization algorithm runs in real-time for 4k image resolutions
using twelve 256x256 flow textures. 2 textures represent two discrete time steps for each
of the 6 charts. We use 2 time steps per chart to be able to interpolate between them.

5.3.3 Results

Figure 5.3 shows the results of our LIC implementation. In Figure 5.3a we can observe
a vortex structure close to Japan. A dark blue colour visualizes slow wind speed while
white represents a high velocity. Close to the center of the vortex the wind velocities
are relatively high while in the center of the vortex there is almost no wind activity.
Especially Figure 5.3b shows that wind current arises more likely over the ocean than
over land. Hence the shape of South America is visible in dark blue in Figure 5.3b. The
accompanying video [Tro19] shows the animation of the LIC that visualizes the direction
of the flow. In Figure 5.3c we can observe how wind currents change over time. Both
pictures show the wind over the African continent. The physical time difference between
these two pictures is around 12.5 hours.

5.4 Illuminated Path Lines

While line integral convolution provides an overview of a snapshot of a vector field, path
lines [Had19] let us gain a better understanding of how specific particles behave in a flow
field. In this section, we explain how we compute and visualize path lines.
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5.4. Illuminated Path Lines

(a) A vortex structure close to Japan (b) Wind currents at the South American coast

(c) Wind currents over the African continent at two different time steps

Figure 5.3: LIC visualization of the wind data set of the DKRZ

5.4.1 Methodology

Intuitively we can think of a path line as the trajectory that a massless particle takes
through an unsteady flow field. We compute a single path line in a chart by making n
forward Euler steps from a given starting position s0. Unlike stream lines, with each
integration step, we also advance the integration time. We always take a constant step
forward in time. There are three possible reasons to terminate the integration of a path
line in a chart:

21
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• We have reached the end of the time domain

• We have reached the maximum number of integration steps

• We have reached a chart boundary. In this case, we restart the integration in
another chart.

To improve the spatial perception of path lines, we illuminate them with an adapted
Phong illumination algorithm proposed by Zoeckler et al. [ZSH96]. Since there are no
normals on a line, we use the tangent vectors of the curve to compute the diffuse and the
specular lighting component. We approximate the tangent T of each discrete point pi on
the path line as Tsi = si+1 − si−1. We compute the intensity I of each particular path
line fragment as I = Iambient + Idiffuse + Ispecular, where Iambient is a constant scalar value.
The other components are defined as:

Idiffuse = kd

√
1− (L · T )2,

Ispecular = ks(V ·R)α,

V ·R = (L · T )(V · T )−
√

1− (L · T )2
√

1− (V · T )2,

where · is the dot product. Note that L specifies the direction of the light, V the viewing
direction and R the direction of the reflection of the incoming light. kd, ks and α are
scalar weights. α controls the size of the specular highlights. Moreover we developed
three approaches to visualize the temporal meaning of path lines:

1. We colour coded the age of the particle on the path line. Pink areas in our results
represent a young particle, while yellow areas show old particles.

2. By lifting the path lines from the surface of the sphere in the ambient 3D space, we
add a time dimension. The higher the path line segment is lifted, the older is the
particle at this segment. To visualize the correspondence between the surface of
the sphere and the 3D path line, we draw the illustrative shadows of the path line
on the sphere. The shadow is the projection of the 3D path line onto the sphere.

3. We animate the path lines by shifting a periodic opacity function along the path
lines. We have implemented three animation modes. See our video [Tro19] for more
details.

5.4.2 Implementation

In contrast to the LIC algorithm, we compute the path lines in parallel on the CPU and
perform the illumination in parallel on the GPU. Our implementation allows the user to
interactively seed multiple path lines in a regular grid around the mouse cursor.

22



5.4. Illuminated Path Lines

5.4.3 Results

Figure 5.4 compares three different visualization approaches of path lines. The result
of the intrinsic path line integration is shown in Figure 5.4a. Since we perform all
computations in 2D in the charts, the path lines lie on the surface of the sphere. By
lifting them, we can observe features of the path lines we could not see before (shown in
Figure 5.4b). For example, some path lines are swirling around some other path lines
that are not moving. To better visualize the correspondence between the path lines in
the 3D space and the surface of the sphere, shadows are drawn (shown in Figure 5.4c).
Figure 5.5a is an example of how the illumination of path lines can improve spatial
perception. Because of the specular highlights, we can estimate the curvature of the lines
in 3D space. Figure 5.5b shows a close view of one of our animation modes (the particle
like animation). Our video [Tro19] shows all animation modes in more detail. In Figure
5.6 we show our results for another data set. We colour coded the age of the particles
on the path lines. In pink areas, the particles of the path line are very young since they
were just seeded, while in yellow areas they are old.

23



5. Visualization of Geophysical Flow on the 2-Sphere

(a) Path lines on the surface of the
sphere

(b) Lifted in 3D ambient space

(c) With illustrative shadows

Figure 5.4: Comparison between visualizing path lines on the surface of the sphere and
lifting them in the surrounding 3D space.
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5.4. Illuminated Path Lines

(a) Illuminated path lines with specular highlights

(b) Particle like animation of path lines

Figure 5.5: Examples for a specular highlight on a path line and one of our three
animation modes
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5. Visualization of Geophysical Flow on the 2-Sphere

Figure 5.6: Path lines of wind data set provided by the Atmospheric and Climate
Modeling research group at King Abdullah University of Science & Technology

26



CHAPTER 6
Conclusion

We presented an entirely intrinsic framework for interactive flow visualization on curved
manifolds. After a detailed introduction to the relevant topics of differential geometry,
we described two flow visualization approaches on curved surfaces. While line integral
convolution provides an overview of a flow field, path lines let us gain more detailed
insight into a flow data set. We used these algorithms to visualize data from climate
simulations.

6.1 Limitations
There are two significant limitations of our intrinsic approach. Firstly, we are limited to
surfaces that have an analytical description. Currently, we define the metric tensor for
measuring lengths. For arbitrarily complex surfaces, we would need to convert the vectors
to their 3D (extrinsic) representation. The second disadvantage is that we currently only
visualize one layer of flow data. Our approach could be extended to visualize flow data
on multiple layers of different altitude, like the wind at different heights, by altering the
radius of the concentric sphere or by intersecting different layers of flow data.

6.2 Future Work
Future work could extend the intrinsic approach to more complex parametric surfaces
than the sphere, e.g., the torus. All algorithms we describe could be adapted to other
parametric surfaces or triangle meshes in general. Also, other visualization techniques
like streak lines, time lines and streak surfaces could be extended to curved surfaces.
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